ACBSE Coaching for Mathematics and Science

# SUMMATIVE ASSESSMENT - II, 2015, MATHEMATICS, Class - IX

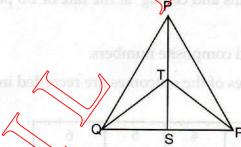
### **SOLVED SAMPLE QUESTION PAPER**

JS/T201501

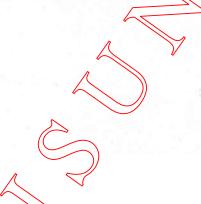
Time allowed: 3 hours

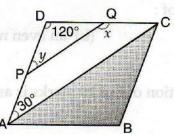
Maximum Marks: 9

### **General Instructions:**


- 1. All questions are compulsory.
- 2. The question paper consists of 31 questions divided into four sections A, B, C and D. Section 'A' comprises of 4 questions of 1 mark each, Section 'B' comprises of 6 questions of 2 marks each, Section 'C' comprises of 10 questions of 3 marks each and Section 'D' comprises of 11 questions of 4 marks each.
- 3. There is no overall choice.
- 4. Use of calculator is not permitted.

## SECTION - A


- 1. When will be the graph of the equation x + a = 0 is a line parallel to the y-axis and to the left of the y-axis?
- 2. If the point (2, 3) lies on the line 4y = ax + 5, find
- 3. In how many parts bisector of an angle divides it?
- **4.** Calculate the median of the given data: 144, 145, 147, 148, 149, 150, 152, 155, 160.


# SECTION - B

5. In the given fig., T is the mid-point of PS. Find ar(QTR).



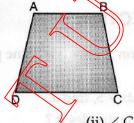
6. In a ||gm ABCD, P and Q are the mid-point of sides DA and DC respectively. If  $\angle DAC = 30^{\circ}$ , then find the values of x and y.





### BSE Coaching for Mathemat

- 7. The edge of a cube is 10.5 mm. Find its total surface area in cm<sup>2</sup>.
- 8. Find the mean of first 8 prime numbers.
- 9. A part of the frequency table is given below:


| Class marks of weights in (kg) | 33 | 38 | 43 |
|--------------------------------|----|----|----|
| No. of students                | 9  | 5  | 14 |

Rewrite the table with class limits.

10. A right circular cylinder is 3 m high and the circumference of its base is 22 m. Find its curved surface area.



- 11. Draw the graph of the linear equation 3x 5y 15 = 0. Write the co-ordinates of the points where the line intersects the two axes.
- 12. For what value of p; x = 2, y = 3 is a solution of (p + 1) x (2p + 3) y 1 = 0? Also write the equation.
- 13. Prove that the area of a quadrilateral formed by joining the mid-point of the sides of a parallelogram is half the area of the parallelogram.
- 14. Construct a  $\triangle ABC$  in which BC = 5 cm,  $\angle C = 60^{\circ}$  and AC AB = 1.5 cm.
- 15. ABCD is trapezium in which  $AB \parallel CD$  and AD = BC. Show that:



(i) 
$$\angle A = \angle B$$

- (ii)  $\angle C = \angle D$ .
- 16. A toy is a in the form of a cone mounted on a hemisphere of base radius 3.5 cm. If the total height of the toy is 15.5 cm. Find its total surface area of the toy .  $U_{\text{Se}} \pi = \frac{22}{7}$
- 17. The floor of a rectangular hall has a perimeter of 250 m and its length and breadth are in the ratio of 13:12. If the cost of painting the four walls and ceiling at the rate of ₹ 5 per m<sup>2</sup> is ₹ 27,000, find the height of the hall.
- 18. Find the Mean and Median of first 12 odd composite numbers.
- 19. A die is thrown 500 times. The frequencies of the outcomes are recorded in the following frequency distribution table :

| Outcome   | 1   | 2  | 3  | 4  | 5  | 6   |
|-----------|-----|----|----|----|----|-----|
| Frequency | 120 | 50 | 65 | 70 | 80 | 115 |

Find the probability of the occurrence of:

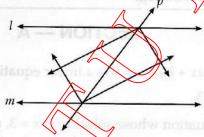
(a) a number between 3 and 6,

(b) an even number,

- (c) an odd number.
- The score of 15 students in an examination out of 10 marks is as below:
  - 3, 9, 7, 5, 6, 3, 7, 6, 7, 4, 7, 7, 4, 8, 2.

Find the mean, mode and median.

## E Coaching for Mathematics


## SECTION - D

21. The co-ordinates of points given in the following table represent some of the solutions of the equation, y - 5x = 2

| $x_i$ | 1 | a line <del>s</del> card | / <del>-</del> | -2 | 2 | - |
|-------|---|--------------------------|----------------|----|---|---|
| $y_i$ |   | 17                       | - 3            | -  |   | 3 |

Find the missing values. Also find the co-ordinates of the points where the line x axis and

- 22. Give the geometrical representation of the equation 3x + 15 = 0 as the equation (i) in one variable, (ii) in two variables.
- 23. Construct  $\triangle ABC$  with BC = 4 cm,  $\angle B = 75^{\circ}$  and AB + AC = 10 cm.
- 24. Prove that of all the chords of a circle through a given point within it, the least is one which is bisected at that point.
- 25. PQ and RQ are chords of a circle equidistant from the centre. Prove that the diameter passing through Q is the bisector of  $\angle PQR$ .
- **26.** ABC is an isosceles triangle in which AB = AC. A circle passing through B and C intersecting AB and AC at D and E respectively. Prove that BC || DE.
- 27. Two parallel lines l and m are intersected by a transversal p. Show that quadrilaterals formed by the bisectors of interior angles is a rectangle.



- 28. A wall of length 10 m was to be built across an open ground. The height of the wall is 9 m and thickness of wall is 36 cm. If this wall is to be built up with bricks whose dimensions are 36 cm  $\times$  15  $cm \times 9$  cm, how many bricks would be required to build three fourth of this wall?
- 29. A hemispherical tank is made up of an iron sheet 1 cm thick. If the inner radius of the tank is 1 m, then find the volume of the iron used to make the tank. (use  $\pi = 3.14$ )
- 30. A game of chance consists of spinning an arrow which comes at rest pointing at one of the number 1, 2, 3, 4, 5, 6, 7, 8 (see figure) and these are equally likely outcomes. What is the probability that it will point at:



(ii) an odd number?

- (iii) a number greater than 2?
- (iv) a number less than 9?
- (v) Which mathematical concept is used in the above problem?
- (vi) What is its value?
- 31. Two brothers have a triangular plot. They decide to distribute it equally amongst themselves but also want to give away a triangular part of it for charity to a school which is attached on the base side of 120 m of the triangular plot.

Answer the following questions:

- What is the area of the triangular plot if its height is 90 m?
- (ii) Explain with the help of figure how could this be possible and what type of parts do the brothers get.
- (iii) Which value of the two brothers is depicted here?

### ACBSE Coaching for Mathematics and Science

# SECTION - 'A'

- 1. Equation x + a = 0 or x = -a will be a line parallel to y axis and to the left of the y-axis and only if a > 0.
- 2. 4y = ax + 5 ...(i)
  - $\therefore$  Point (2, 3) lies on the line (i)
  - $4 \times 3 = a \times 2 + 5$  12 5 = 2a 2a = 7



- 3. Bisector of an angle divides it in two equal parts.
- **4.** Data: 144, 145, 147, 148, 149, 150, 152, 155, 160 Here, N = 9 (odd)

$$\therefore \qquad \text{Median} = \left(\frac{N+1}{2}\right)^{\text{th}} \text{term}$$

$$=$$
  $\left(\frac{9+1}{2}\right)^{th}$  term  $=$   $5^{th}$  term  $=$  149.

# SECTION B

5. Median QT and RT divide  $\Delta PQS$  and  $\Delta PRS$  in two triangles of equal area.

$$\operatorname{ar}(QTS) = \frac{1}{2}\operatorname{ar}(PQS) \qquad \dots(i)$$

$$\operatorname{ar}(RTS) = \frac{1}{2}\operatorname{ar}(RPS) \qquad \dots(ii) \mathbf{1}$$

From (i) + (ii), we get

$$\operatorname{ar}(QTS) + \operatorname{ar}(RTS) = \frac{1}{2} \left[ \operatorname{ar}(PQS) + \operatorname{ar}(RPS) \right]$$

$$\operatorname{ar}(QTR) = \frac{1}{2} \operatorname{ar}(PQR)$$
1

**6.** In  $\triangle ADC$ , P and Q are mid-points of lines DA and DC respectively.

So, 
$$PQ \parallel AC$$
  
 $\angle DPQ = \angle PAC = 30^{\circ} \text{ (corresponding)}$   
 $\angle y = 30^{\circ}$ 

In 
$$\triangle PDQ \Rightarrow y + 120^{\circ} + \angle DQP = 180^{\circ}$$
  
 $30^{\circ} + 120^{\circ} + \angle DQP = 180^{\circ}$   
 $\angle DQP = 30^{\circ}$   
 $\angle x = 180^{\circ} - \angle DQP = 180^{\circ} - 30^{\circ} = 150^{\circ}$ 

# ACBSE Coaching for Mathematics and Science

7. The edge of cube = 
$$10.5 \text{ mm} = \frac{10.5}{10} \text{ cm}$$

$$= 1.05 \text{ cm}$$
Total surface area of cube 
$$= 6a^2 = 6 \times 1.05 \times 1.05$$

$$= 6.615 \text{ cm}^2$$



1/2

8. First 8 prime numbers are 2, 3, 5, 7, 11, 13, 17, 19

Mean 
$$(\overline{x}) = \frac{\text{Sum of 8 prime numbers}}{8}$$

$$= \frac{2+3+5+7+11+13+17+19}{8} = \frac{77}{8} = 96$$

9. Difference of weight = 38 - 33 = 5

Half of difference = 
$$\frac{5}{2}$$
 = 2.5



:. Table with class limits

| Class Interval of Weight (in kg) | 30.5 - 35.5 | \$5.5 – 40.5 | 40.5 - 45.5 | 1½    |
|----------------------------------|-------------|--------------|-------------|-------|
| No. of Students                  | 9           | 5            | 14          | ] -/- |

10. Height h = 3 m

Circumference of base = 
$$2\pi r = 22$$

Curved surface area of right

Circular cylinder =  $2\pi rh$ =  $22 \times 3 = 60 \text{ m}^2$ .



1

1

# SECTION - 'C

11. Equation

$$3x - 5y - 15 = 0$$

$$5y = 3x - 15$$

$$y = \frac{3x - 15}{5} \Rightarrow y = \frac{3}{5}(x - 5)$$

| x              | )0                  | 5                | -5          |
|----------------|---------------------|------------------|-------------|
| <sub>1</sub> y | -3                  | 0                | -6          |
|                |                     | A y              |             |
|                | \ /                 | 4 1 3            |             |
|                |                     | 2                |             |
|                | x'                  | 1                | <b>∠</b>    |
| $\searrow$     | -5 -4 -3 -2 -1<br>- | 1 2 3 1 5<br>1 B | x<br>(5, 0) |
| 1              |                     | 3 A(0, -3)       |             |
| <i>)</i> )     | 3x-54-15=0          | 4                |             |
|                | 34                  | 6                |             |
|                | C(5, 6)             | <b>₩</b> y'      |             |

B

The graph of the line intersects x - axis at (5, 0) and y - axis at (0, -3).

## oaching for Mathematics and

**12.** Solution 
$$x = 2$$
,  $y = 3$ 

$$(p+1) \times 2 - (2p+3) \times 3 - 1 = 0$$

$$2p + 2 - 6p - 9 - 1 = 0$$

$$p = -2$$

Equation

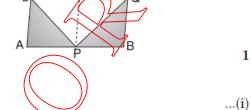
$$-x+y-1=0$$

$$y = 1 + x$$



13. Given: ABCD is a parallelogram and points P, Q, R and S are the mid-points of sides AB, BC, CD and DA respectively.

$$ar(PQRS) = \frac{1}{2}ar(ABCD)$$


**Construct**: Join *P* to *R*.

**Proof**: Here *P* and *R* are the mid-points of sides *AB* and *CD* of parallelogram ABCD.

$$PR \parallel BC \parallel AD$$

In parallelogram APRD,

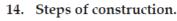
$$ar (PSR) = \frac{1}{2} ar (APRD)$$



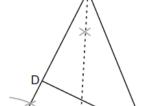
 $[:: \Delta PSR \text{ and parallelogram } APRD \text{ are on same base } PR \text{ and between same parallels } PR \text{ and } AD] \mathbf{1}$ Similarly in parallelogram PBCR

$$ar(PQR) = \frac{1}{2}ar(PBQR)$$

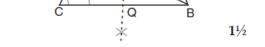
...(ii)


From (i) + (ii), we get

as 
$$(PSR)$$
 + ar  $(PQR)$  =  $\frac{1}{2}$  [ar  $(APRD)$  + ar  $(PBCR)$ ]

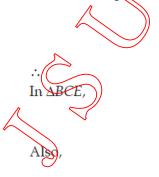

$$ar(PQRS) \leqslant \frac{1}{2}ar(ABCD)$$

Proved. 1

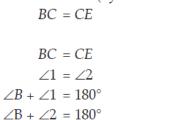

11/2

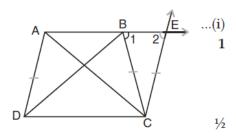


- (i) Draw a line segment BC = 5 cm and at point C make an angle  $= 60^{\circ}, \angle XCB = 60^{\circ}.$
- (ii) Cut the line segment CD = 15 cm) (equal AC AB = 1.5 cm) on ray CX.




- (iii) Join DB and draw the perpendicular bisector PQ of DB.
- (iv) The perpendicular bisector intersects CX at point A.
- (v) Joint AC.
- (vi)  $\triangle ABC$  is the required triangle.





# 15. Through C draw CE AD

:. AECD is a parallelogram



$$\angle A + \angle 2 = 180^{\circ}$$
  
 $AD = BC \text{ (given)}$   
 $AD = CE \text{ (by construction)}$   
 $BC = CE$ 



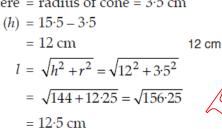


...(ii) ½

### SE Coaching for Mathematics and

From (i) and (ii), we get

$$\angle A = \angle B$$


Again, we get

$$\angle A + \angle D = \angle B + \angle C = 180^{\circ}$$
  
 $\angle C = \angle D$ 

Total height of toy = 15.5 cm 16.

Radius of semi-sphere = radius of cone = 3.5 cm

Height of cone



Total surface area of toy =  $\pi rl + 2\pi r^2$ 

$$= \pi r (l + 2r) = \frac{22}{7} \times 3.5 (12.5 + 2 \times 3.5)$$
$$= 22 \times 0.5 \times 19.5$$

$$= 22 \times 0.5 \times 19.5$$
  
= 214.50 cm<sup>2</sup>.

(Corresponding A

15.5 cm

1

1

17. Let the length and breadth of a rectangular hall are 13x and 12x

Perimeter of rectangular hall = 2(l + b)

$$250 = 2(13x + 12x)$$
$$125 = 25x$$

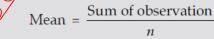
$$125 = 25x$$

$$x = 5$$
  
 $1 = 13 \times 5 = 65 \text{ m}, b = 12 \times 5 = 60 \text{ m}$ 

1 Area of four wall and ceiling =  $2(1+b)h + 1 \times b$ 1/2

Cost of painting the four walls and ceiling at the rate of 5 per  $\mathrm{m}^2$ 

$$= [2 (l+b)h + lb] \times 5$$
 ½


$$27000 = [2(65 + 60)h + 65 \times 60] \times 5$$

$$5400 = 250h + 3900$$

$$250h = 1500$$

$$h = 6 \,\mathrm{m}$$

18. First 12 odd composite numbers are, 9, 15, 21, 25, 27, 33, 35, 39, 45, 49, 51, 55.



$$=\frac{404}{12}=33.6$$

Median = 
$$\left[\frac{n^{\text{th}} \text{obs}}{2} + \left(\frac{n}{2} + 1\right)^{\text{th}} \text{obs}\right]/2$$

$$= \frac{6^{th} obs + 7^{th} obs}{2}$$

$$=\frac{33+35}{2}=\frac{68}{2}=34$$

Mean = 33.6

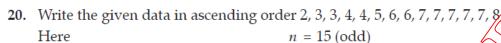
$$Median = 34$$

٠.

1/2

## ACBSE Coaching for Mathematics and Science

19. (a) Probability (a number between 3 and 6)


$$= \frac{70 + 80}{500} = \frac{150}{500} = \frac{3}{10}$$

(b) Probability (an even number)

$$= \frac{50 + 70 + 115}{500} = \frac{335}{500} = \frac{47}{100}$$

(c) Probability (an odd number)

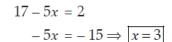
$$= \frac{120 + 65 + 80}{500} = \frac{265}{500} = \frac{53}{100}$$



Mean = 
$$\frac{\Sigma x}{n}$$
  
=  $\frac{2+3+3+4+4+5+6+6+7}{5}$   $\frac{7+7+7+7+8+9}{5}$   
=  $\frac{85}{15}$  = 5.6

Median = 
$$\left(\frac{n+1}{2}\right)^{\text{th}}$$
 term =  $\left(\frac{15+1}{2}\right)^{\text{th}}$  term

# SECTION - D


21. Equation

|     | y - 3x - 2 |    |    |    |    |               |  |  |  |
|-----|------------|----|----|----|----|---------------|--|--|--|
| /// | 1          | 3  | -1 | -2 | 2  | $\frac{1}{5}$ |  |  |  |
|     | 7          | 17 | 2  | 0  | 10 | 2             |  |  |  |

(i) Put x = 1 in equation (i)

$$y-5\times 1=2 \Rightarrow y=7$$

(ii) Put y = 17 in equation (i)



(iii) Put y = -3 in equation (i)

$$-3 - 5x = 2$$
$$-5x = 5 \Rightarrow \boxed{x = -1}$$

(iv) Put x = 2 in equation (i)

$$y - 5 \times (-2) = 2 \Rightarrow y = -8$$

(v) Put x = 2 in equation (i)

$$y - 5 \times 2 = 2 \Rightarrow \boxed{y = 12}$$

1

1

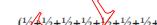
1

1

... (i)

## BSE Coaching for Mathematics and

(vi) Put y = 3 in equation (i)


$$3 - 5x = 2$$

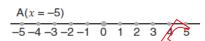
$$-5x = -1 \Rightarrow \boxed{x = \frac{1}{5}}$$



Put x = 0 in equation (i)

$$y - 0 = 2 \implies y = 2$$

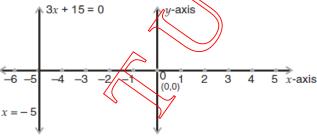



Line cuts the y-axis at (0, 2)

Put y = 0 in equation (i)

$$0 - 5x = 2 \Longrightarrow x = \frac{-2}{5}$$

Line cuts the *x*-axis at  $\left(\frac{-2}{5},0\right)$ 


3x + 15 = 022. (a) 1/2



$$3x = -15$$

$$x = -5$$
 is a point on the number line.  $\frac{1}{2}$ 







75°

is a line parallel to y-axis in two variables.

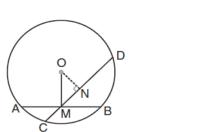
# 23. Steps of Construction:

- (i) Draw a line segment BC = 4 cm.
- (ii) Draw a ray BX such that  $\angle CBX = 75^{\circ}$ .
- (iii) From ray BX, cut off BM = 10 cm.
- (iv) Join MC.
- (v) Draw perpendicular x bisector of MC. Intersecting BM at A.
- (vi) Join  $AC_{\lambda}$  then  $\Delta ABC$  is the required triangle.



AB is a chord with mid-point M.

To prove : AB CD


Join OM and  $ON \perp CD$ 

AOAM is right angled triangle

 $\therefore$  OM > N, (OM is hypotenuse)

Chord CD is nearer to in comparison of AB,

 $\Rightarrow$  CD > AB or AB < CD



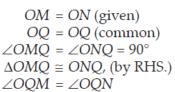
2

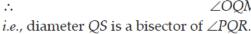
1

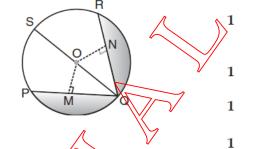
1

1

1


2


## BSE Coaching for Mathematics and


O is centre of the circle. Chord PQ and RQ are equi-distance from the centre O.

Then OM = ON

i.e.,  $OM \perp PQ$ ,  $ON \perp RQ$ In  $\triangle OMQ$  and  $\triangle ONQ$ 

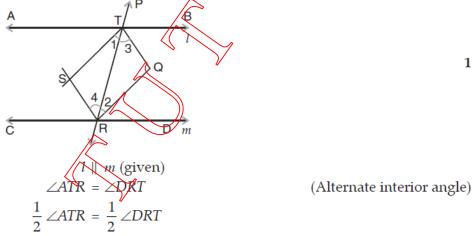






**26.** In  $\triangle ABC$ ,

٠. Again,


$$AB = AC$$
 1  $\angle C = \angle B$  ...(i) (Angle opposite to equal sides of a triangle are equal) 1

 $\angle ADE = \angle C$  and  $\angle AED = \angle B$ 

(Exterior angle of cyclic quadrilateral BCED) 1

$$\angle ADE = \angle B$$
 and  $\angle AED = C$  [by equation (i)] 1 BC || DE.

27.



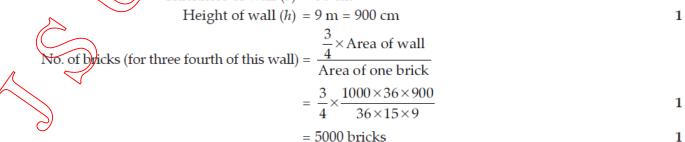
$$\angle 1 = \angle 2$$
 (:: TS and RQ are bisectors of interior angle) 1

But these are alternative interior angle

 $ST \parallel RQ$  and  $SR \parallel TQ$ 

:. RST is a parallelogram

1  $ATR + \angle BTR = 180^{\circ}$ Again, (Linear pair of angle) 1


$$\frac{1}{2} \angle ATR + \frac{1}{2} \angle BTR = \frac{1}{2} \times 180^{\circ}$$

$$\angle 1 + \angle 3 = 90^{\circ}$$

$$\angle SRT = 90^{\circ}$$

.. QRST a rectangle.

Length of wall (l) = 10 m = 1000 cm28. 1 Thickness of wall (b) = 36 cmHeight of wall (h) = 9 m = 900 cm1



# 3E Coaching for Mathematics and

29. Inner radius of hemisphere (x) = 1 m = 100 cm

Outer radius of hemisphere (R) = 100 + 1 = 101 cm

Volume of hemisphere (used to make the tank)



$$=\frac{2}{3}\times 3{\cdot}14\times (101^3-100^3)$$

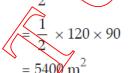


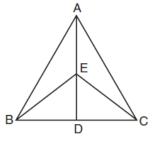
1/2

1/2

2

2

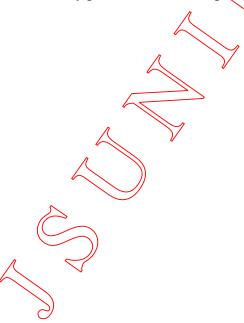

- = 63430·09 cm<sup>3</sup>
- Probability (getting a number 8) =  $\frac{\text{Number of outcomes}}{\text{Total number of possibilities}}$ 30. (i)
  - (ii) Probability (getting an odd number) =  $\frac{4(1,3,5,7)}{8} = \frac{4}{8} = \frac{1}{2}$
  - (iii) Probability (getting a number greater than 2 which is 3, 4, 5, 6, 7, 8) =
  - (iv) Probability (a number less than 9 which is 8, 7, 6, 5, 4, 3, 2)
  - (v) Probability


(vi) Equal distribution.

 $(\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + 1 + 1)$ 

Base BC = 120 m/s31. (i) Height  $AD = 90 \,\mathrm{m}$ 

Area of triangular plot =  $\frac{1}{2}$  × base × height






(ii) In  $\triangle ABC$  they draw median AD on base BC and divide it into two equal areas ABD and ACD. Take any point E on AD and join BE and CE. 1

Two brothers get areas an  $(\triangle ABE)$  and ar  $(\triangle ACE)$  and ar  $(\triangle BCE)$  is donated to school.

(iii) Any positive value is acceptable. Both brothers know importance of education love their community. 1

